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The Stokes problem describes flow of an incompressible constant-viscosity fluid when
the Reynolds number is small so that inertial and transient-time effects are negligible.
The numerical solution of the Stokes problem requires special care, since classical
finite element discretization schemes, such as piecewise linear interpolation for both
the velocity and the pressure, fail to perform. Even when an appropriate scheme is
adopted, the grid must be selected so that the error is as small as possible. Much of the
challenge in solving Stokes problems is how to account for complex geometry and to
capture important features such as flow separation. This paper applies adaptive mesh
techniques, usinga posteriori error estimates, in the finite element solution of the
Stokes equations that model flow at pore scales. Different selected numerical test
cases associated with various porous geometrics are presented and discussed to
demonstrate the accuracy and efficiency of our methodology.q 1998 Elsevier Science
Limited.

1 INTRODUCTION

In a hydrogeologic and environmental study, the flow of
groundwater and the transport of solutes are represented at
scales much larger than that of a pore unit. Usually, the
medium is viewed as a continuum and Darcy’s scale
becomes the smallest scale of interest. Flow is governed
by an equation based on Darcy’s law and continuity of
bulk mass, and the transport and fate of solutes is governed
by the advection-dispersion-reaction equation with bulk
fluxes.8,16

The study of flow and transport mechanisms at the pore
scale is much more difficult but is inevitable for a better
understanding of flow and transport in porous media. A case
in point is the presence of zones of immobile water which
may impose mass transfer limitations and thus affect reac-
tion rates, advective mass transport rates, and dispersive
mixing.14 There is considerable interest in understanding
how immobile regions may be created and how flow may
be reserved in ‘dead end’ pores and in fissures. The inves-
tigation of such particular flow phenomena is a prerequisite
for the study of heterogeneous reactions, such as in the
presence of biofilms.12,13

The Navier–Stokes equations are considered as an ideal
model in numerically simulating the flow of incompressible
fluids with constant viscosity. However, the nonlinear

Navier–Stokes equations require a complicated and expen-
sive solution process. Fortunately, a mathematically simpli-
fied model, which is called the Stokes problem, can be
reduced from the Navier–Stokes equations physically in
the case of slow flow, i.e. when the Reynolds number is
small. In fact, low Reynolds numbers are the rule for porous
medium flows.19,28

Numerical approximations (previous studies have
involved Stokeslets,20 used the lattice-gas method,17 the
finite difference scheme30 and boundary element simula-
tion28) have been widely used in the solution of the
Stokes equations. In our study, the geometry of real
porous media is very complex, e.g. the solid boundary is
wavering, the throat parts located among particles are very
narrow resulting in relatively high velocities, etc. In this
case, an efficient and flexible numerical tool is required to
account for all the important features of the pore geometry.
It is well known that the finite element approximation can
achieve this goal and we adopt it in our numerical
implementation.

Properties of existence, uniqueness, and regularity of the
finite element solution of the Stokes equations have been
studied previously.25,26,23,31 Algorithmic and numerical
implementation issues have also been discussed.32,18,23,21,27

However, classical finite element methods with a single pre-
generated grid seem inadequate for obtaining a satisfactory
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numerical solution in the case of complicated geometry. In
order to get a detailed and precise representation of flow in
porous media, we use in this study a mesh adaptive
algorithm coupled witha posteriorierror estimate analysis.

Historically, this mathematical approach was introduced
by Babuška for more general problems;2 in the domain of
elliptic equations, some results of theoretical research ona
posteriori error estimates have been presented by Bank.3

Cao11 has studied adaptive grids based ona posteriorierror
estimates for the Stokes problem in its most generalized form
and we will apply these results in our work. In short, the idea
is to estimate the error within each element by solving a local
Neumann problem corresponding to the mathematical model.
Through solving this local Neumann problem, we obtain thea
posteriorierror estimates, which can be used to form both local
and global energy norms involving all the physical variables.
This energy norm is ultimately used to approximately
equi-distribute the error index over the mesh.

Guided by this mathematical criterion, we implement
mesh adaptation through a ‘bisection refinement’ algorithm5

that can ensure a quite continuous granularity on the adapted
grid. In addition to refinement, we can move points on the
mesh within a reasonably small neighborhood to further
improve the mesh quality.6 The mesh refinement and
node-moving techniques complement each other, allowing
for great flexibility to achieve the best mesh possible.

The rest of the paper is organized as follows. Section 2
focuses on the Stokes problem: we first describe this
mathematical model and some specific stylized geometries
encountered in porous medium flow studies, then we explain
the renowned ‘mini-element’ formulation specifically
applied to the solution of the Stokes problem, and we sche-
matize a Stokes solver of UZAWA type. Section 3 gives the
a posteriorierror estimator framework corresponding to the
Stokes problem. Section 4 outlines different mesh adapta-
tion schemes. In Section 5, we present results for three
numerical test cases associated with typical porous compu-
tational domains and discuss the resulting different solution
behaviors. We finally make some concluding remarks and
discuss extension of this work in Section 6.

2 THE STOKES PROBLEM

2.1 Mathematical modeling

For illustration, consider flow inside a unit with sinusoidal
wall boundary (see Fig. 1) isolated from a long periodic
porous tube. We will determine the periodic flow inside it.
Here, this flow is generally governed by the following
Stokes equations:

¹ mD~uþ ~=p¼ ~0 in Q

~=·~u¼ 0 in Q

8<: (1)

where~u,p represent the velocity and the pressure, respec-
tively; the positive parameterm is the dynamic viscosity of
the fluid.

Boundary conditions need to be added as follows. For
example, in the case of the pore shown in Fig. 1, we use
the no-slip/no-flux condition for the solid surfaces of the
channel:

~u¼ ~0 on Gwall (2)

and the conditions at the entrance and the exit are typically
imposed by a certain parabolic~u-profile. Previously,22 an
approximate analytical approach was used to find the solu-
tion in a long sinusoidal channel. Consistent with that work,
we set:

~u¼ periodic velocity profile onGentry; Dp¼ constant

(3)

where Dp represents the reduction of pressure at two
equivalent points onGentry. In our numerical simulation,
the results are presented assuming that the average pressure
over the computational domain is zero.

More precisely, we enforce the periodic boundary con-
dition by solving a sequence of problems. Starting with an
initial velocity profile onGentry, we solve the Stokes problem
in a 2-unit domain shown in Fig. 2. The behavior of the
velocity occurring at the middle throatGentry* is then col-
lected; next, we combine the pre-imposed~u-profile at the
starting and ending sections and the newly-collected~u-pro-
file at the middle throat, this updated~u-profile serving as
new Dirichlet boundary condition for the entrance and the
exit. Such a loop converges rapidly to an identical~u-profile
at all three throats.

As a complement, another numerical test case will be
implemented in a domain with abruptly varying boundary
so that we can observe some singular phenomena within the

Fig. 1. Computational domain No. 1.
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Stokes flow context. Such a step-like geometry is illustrated
in Fig. 3.

2.2 Finite element discretization

To establish notation, let us review some functional and
discrete spaces. For simplicity, we suppose thatQ is a poly-
gonal two-dimensional domain. The spaceL2 ¼ L2(Q) is a
regular set of square integrable functions overQ, on which
(·,·) represents the usual inner product, associated with the
norm k·k. The spaceH1 ¼ H1(Q) denotes the usual Sobolev
space of functions inL2 whose first derivatives are also
contained inL2. Let C0 be the space of functions continuous
onQ. Qh represents here a standard finite element triangula-
tion of Q with h, where the quantityh¼ maxt[Qh

htis a
measure of the granularity of the triangulation. The spaces
of linear and cubic polynomials are denoted asP1 andP3,
respectively. Now we can define the following discrete
spaces:

H1
h ¼ { qhlqh [ C0(Q), qhlt [ P1, ;t [ Qh} (4)

V1
hg

¼ { ~vhl~vh [ (C0(Q))2, ~vhlt [ Pp
1t 3 Pp

1t, ~vhlG ¼ ~g,

;t [ Qh} ð5Þ

with

Pp
1t ¼ { qlq¼ q1 þ kft, q1 [ P1, k [ R,ft [ P3,

ftl]t ¼ 0,ft(Gt) ¼ 1} ð6Þ

whereGt is the centroid of the trianglet. A function likeft

is usually called a bubble-function.1

In eqn (1), due to the incompressibility condition~=·~u¼ 0,
the finite element discretization spaces for the velocity and
the pressure need to satisfy a compatibility condition, also
called ‘inf-sup condition’ or ‘Ladyzhenskaya–Babusˇka–
Brezzi (LBB) condition’,9 which is equivalent to the
requirement of nonsingularity of the matrix resulting from
the discretized Stokes system, and thus guarantees, if satis-
fied, the existence and uniqueness of the solution. In parti-
cular, this condition implies a higher number of velocity
degrees of freedom than pressure unknowns. This condition

Fig. 2. Computational domain No. 2.

Fig. 3. Computational domain No. 3.
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is:

inf
p[L2(Q)

pÞ0

sup
~u[ðH1(Q)Þ2

~uÞ0

(~=·~u, p)

k~=~uk·kpk
$ c . 0 (7)

wherec is a positive constant. Among possible space dis-
cretizations satisfying the LBB condition, we choose the
‘mini-element’ formulation,1 which permits the resolution
of the Stokes problem on a single grid for all the unknowns.

The basic idea of the mini-element formulation is that the
pressure is discretized by polynomials of degree 1 (P1),
while the velocity is also discretized by polynomials of
degree 1, augmented by a polynomial of degree 3 (bub-
ble-function) which vanishes on the edges of the triangle
t. With the mini-element formulation, the discretized Stokes
system is written as:

Find (~uh,ph) [ V1
hg

3 H1
h such that

m(~=~uh, ~=~v) ¹ (ph, ~=·~v) ¼ ~0 ;~v [ V1
h0

¹ (q, ~=·~uh) ¼ 0 ;q [ H1
h

8>>><>>>: (8)

where~v andq are the test functions associated with~uh and
ph, respectively. Using elementwise integration, the ‘mini-
element’ discretization leads eqn (8) to the following stiff-
ness matrix equation of(~uh [ V1

hg
,ph [ H1

h) for eacht:

At et 0 0 Bt
t,x

et
t j9

t 0 0 wt
t, x

0 0 At et Bt
t,y

0 0 et
t j9

t wt
t, y

Bt,x wt,x Bt, y wt,y 0

0BBBBBBBBB@

1CCCCCCCCCA

uh, l

uh,b

vh, l

vh, b

ph, l

0BBBBBBBB@

1CCCCCCCCA
¼

0

0

0

0

0

0BBBBBBBB@

1CCCCCCCCA
(9)

where the solution(~uh,ph) can be uniquely decomposed
into its linear part(~uh, l ,ph) at three vertices of the triangle
t and its bubble part(~uh, b,0) at the centoid oft (here, the
subscriptsl andb represent the piecewise linear and cubic
interpolations, respectively); thus, for the trianglet, there
are totally 11 unknowns: 4 unknowns for each component
of the velocity and 3 for the pressure. The 33 3 matrices
At,Bt,x,Bt;y correspond to inner products involving linear
basis function for the velocity and the pressure, the scalar
j9

t is the contribution to theH1 inner product from the cubic
bubble functions for the velocity, and the 3-vectorswt,w and
wt,y correspond to contributions to the divergence term
for bilinear basis functions (1-order derivative of the
cubic bubble functions for the velocity) and linear
functions (for the pressure). The detailed expressions of
each bloc in eqn (9) can be found elsewhere11 where
the Stokes problem is studied in its most general form.
For further discussion, we specify here only the expression
of j9

t:

j9
t ¼

m(h2
1 þ h2

2 þ h2
3)

720ltl
(10)

wherehi (i ¼ 1,2,3) andltl are the length of three edges and
the area oft, respectively.

As mentioned, the bubble function turns out to be zero on
the triangle edges. We use in fact only the linear part of the
velocity solution. In practice, we can eliminate formally the
bubble unknownsuh,b andvh,b from the left-hand side of eqn
(9). This can be done elementwisely. With the bubble
unknowns statically condensed,11 eqn (9) is now reduced
into the following form:

A9
t 0 B9 t

t,x

0 A9
t B9 t

t,y

B9
t, x B9

t,y ¹ C9
t

0BBB@
1CCCA

uh, l

vh, l

ph, l

0BB@
1CCA¼

F1

F2

H

0BB@
1CCA (11)

Interested readers are referred elsewhere11 for the details of
each bloc in eqn (11). We give here only the form ofC9

t

which is no longer zero as in eqn (9):

C9
t ¼

1

j9
t

(wt,xw
t
t,x þ wt,yw

t
t,y) (12)

In fact, the solvability of the Stokes problem is owing to the
condensation terms appearing in eqn (12).

2.3 A Stokes solver

The assembly of all elementwise contributions and right-
hand sides leads the Stokes system of eqn (11) to the follow-
ing global equation:

Ā B̄

B̄t C̄

 !
ū

p̄

 !
¼

F̄

H̄

 !
(13)

We solve the linear Stoke problem using a multigrid algo-
rithm with hierarchical basis.4 Since we will adopt in this
study the ‘longest edge bisection’ rule for triangle refine-
ment (see Section 4 for details) whose hierarchical nature is
not obvious, an auxiliary process is required to help us
construct an ‘artificial multigrid’ structure on an arbitrary
mesh according to the distribution of granularity of the
triangulation.7 With transitions within V-cycle multigrid
structure, the following UZAWA-like conjugate gradient
method15,24,10is used to solve the whole Stokes system.11

Step 1:

give e p 1;
give p̄0;
solve Āū0 ¼ F̄ ¹ B̄p̄0;
g0 ¼ H̄ ¹ B̄tū0 ¹ C̄p̄0;
if kg0k # e, the solution ū¼ ū0, p̄¼ p̄0 is achieved;
otherwise go to Step 2.

Step 2:

solveSḡ0 ¼ g0;
h0 ¼ ¹ ḡ0;
solve Āx0 ¼ ¹ B̄h0;
h0 ¼ ¹ C̄h0 ¹ B̄t

x0;

a0 ¼ ðg0, ḡ0Þ=ðh0,h0Þ;
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ū1 ¼ ū0 þ a0x0;
p̄1 ¼ p̄0 þ a0h0;
g1 ¼ g0 þ a0h0;
if kg1k # e, the solution ū¼ ū1, p̄¼ p̄1 is achieved;
otherwise go to Step 3.

Step 3: (for m $ 1):

solveSḡm ¼ gm;
gm ¼ (gm, ḡm)=(gm¹ 1, ḡm¹ 1);
hm ¼ ¹ ḡm þ gmhm¹ 1;
solve Āxm ¼ ¹ B̄hm;
hm ¼ ¹ C̄hm ¹ B̄t

xm;
am ¼ (gm, ḡm)=(hm,hm);
ūmþ 1 ¼ ūm þ amxm;
p̄mþ 1 ¼ p̄m þ amhm;
gmþ 1 ¼ gm þ amhm;
if kgmþ 1k # e, the solution ū¼ ūmþ 1, p̄¼ p̄m is
achieved; otherwise replacem by m þ 1 and go to
the beginning of Step 3.

In Steps 2 and 3,S is a preconditioner and this precondi-
tioning is optional.

3 A POSTERIORI ERROR ESTIMATOR

We have chosen ana posteriorierror estimate as the criter-
ion of our adaptive mesh algorithms. The complete deriva-
tion and detailed analysis of our estimator is too lengthy to
be presented in this paper. The interested reader is referred
elsewhere11 for more details on thea posteriorierror esti-
mate for the generalized Stokes problem. Here, we just
reduce that research result into the case of the Stokes
problem (eqn (1)).

Our a posteriorierror estimator requires the element-by-
element solution of a local Neumann problem, discretized
by a finite element discretization of higher order, to obtain a
local error indicator for each physical variableū andp in the
Stokes problem as expressed in eqn (1). LetBt be the set of
quadratic polynomials overt which are zero at the vertices
of t. Because in Section 2 we solve the Stokes problem
using linear elements (even with the mini-element formula-
tion, the velocity is represented by only its linear part after
the static condensation of bubble unknowns), the local error
approximations should be computed with at least the ‘bump’
basis functions constructed inBt. Then, (~eS, eS) [ (Bt)3

will be elementwisely solved, the error unknowns arising
at the middle points of the three edges of the trianglet; for
the solution group (̄u,p) each has 3 error unknowns on three
edges, totally resulting in 9 error unknowns. The local
approximate error estimate(~eS, eS) ¼ (~u,p) ¹ (~uh, l ,ph, l) is
computed by solving the following 93 9 linear equation
for each trianglet:

with (~uh, l , ph), the piecewise linear solution resulting from
the mini-element formulation (for the velocity, only the
linear part of the numerical solution is used). In eqn (14),
the notation of (·,·)t represents the usual inner product
strictly over trianglet while , ·,· . ]t represents the
inner product along the boundary oft; []~uh, l =]n]A is the
average normal derivative of~uh, l across the edges oft; lt

a positive multiple for each trianglet, we define it as:

lt ¼
ltl

3600j9
t

(15)

with j9
t given in eqn (10).

Finally, using these local error indicators, we can form
both local and global energy norms:

lk(~e, e)kl2 ¼ mk~=~ek2 þ
1
m
kek2 (16)

for use in our adaptive mesh algorithms.

4 ADAPTIVE MESH ALGORITHMS

A simple bisection algorithm,5 called longest edge bisec-
tion, is applied in this work. According to the suggestion
of Rivara,29 elements selected for refinement are bisected
along their longest edge. The neighbor element sharing the
longest edge is also bisected along its longest edge. If the
result is a compatible triangulation, the process stops. Other-
wise, it is recursively applied to the longest edge neighbors
of all refined elements. An example is shown in Fig. 4. This
process is known to have finite termination, typically in a
very small number of steps.

Although there is also a natural tree data structure which
could be used in this case, we have implemented our longest
edge bisection algorithm with no refinement tree, keeping
only those elements which are currently in the mesh. This
has allowed us to study coarsening algorithms for use on
completely unstructured meshes. Such algorithms have
applications in the adaptive unrefinement of an unstructured
mesh, as well as certain algebraic hierarchial basis multi-
level iterative methods.7

For both refinement and unrefinement algorithms,
a posteriori error estimates are used to decide which ele-
ments to refine/unrefine. The guiding principle is that of
mesh equilibration; i.e. we attempt through the refine-
ment/unrefinement process to create a final mesh in which
all elements have approximately the same error regardless
of size.

Our mesh moving algorithm also uses ana posteriori
error estimator, but in a slightly different fashion. In our
algorithm, the mesh topology (connectivity) remains fixed,
but the locations of the mesh points themselves are allowed
to move in response to the error estimator. Our procedure

m(~=~eS, ~=~v)t ¹ (eS, ~=·~v)t ¼ ¹ m(~=~uh, l , ~=~v)t þ (ph, ~=·~v)t þ , m
]~uh, l

]n

� �
A
¹ ph~n, ~v.]t ;~v [ Bt 3 Bt

¹ (q, ~=·~eS)t ¹ lt(~=eS, ~=q)t ¼ (q, ~=·~uh, l)t þ lt(~=ph, ~=q)t ;q [ Bt

8><>: (14)
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consists of a Gauss–Seidel-like iteration on the vertices in
the mesh, in which the position of each vertex is locally
optimized with all other vertices held fixed. This is illus-
trated in Fig. 5, where the position of vertexv is optimized
within the regionQv by approximately minimizing thea
posteriori error estimate with respect to vertex location.
Each optimization problem has two degrees of freedom,
and is solved using a simple approximate Newton iteration.
Details of this algorithm can be found elsewhere.6 Not all
vertices in the mesh are allowed to move. Some boundary
and interface vertices must remain fixed to preserve the
definition of the region; others are allowed only one
degree of freedom.

5 NUMERICAL EXPERIMENTS

We will present in this section three typical test cases of
Stokes flow simulation. The first two are associated with
simusoidal channels. For this geometry, withw̄, w̄þ 2a,
and L denoting the pore unit’s average width, maximum
width, and length, respectively (see previous work14 for
specific details on geometry definition),a=w̄ and L=w̄ are
the two most important parameters. The former describes
the narrowness of throat parts in the tube; the latter
describes how gradually the width changes. The computa-
tion will be implemented on single-pore domain (see Fig. 1)
and on double-pore domain (see Fig. 2), respectively, verifying
the reasonableness of Dirichlet boundary condition setting
presented in Section 2.1. The third numerical experiment
will focus on flow simulation in steeply changing step-like

channel (see Fig. 3) as we are particularly interested in flow
behavior in the case of large fluctuations.

5.1 Test case 1: flow in single pore witha=w̄¼ 0:45,
L=w̄¼ 1:25

Our first test case is to simulate the Stokes flow in a single
pore unit which looks rather sharp. The finite element mesh
is initialized with 105 nodes and 168 triangles (see the upper
part of Fig. 6, only the upper half of the whole grid is shown
in this set of figures).

Based on thea posteriori error estimate analysis, the
points on the grid are then slightly moved, and we further
subdivide each triangle into 16 to get enough points, which
yields an intermediate mesh (NV¼ 1425,NT¼ 2688) with a
quite obvious hierarchial refinement structure (see the
middle-left grid in Fig. 6). After moving nodes, the marks
of the nested refinement disappear, and the density of points
on the resulting mesh becomes much more continuous (see
the middle-right grid in Fig. 6).

Then, the mesh is adapted to the flow behavior by
several sweeps of refinement towards the point target num-
berNVtarget¼ 2000 and, finally, we obtain a grid with 1999
nodes and 3784 elements (see the lower-left grid in Fig. 6).
As the figure clearly demonstrates, the throat areas are
remarkably refined due to the fastest flow velocity arising
there; additionally, the imposition of non-homogeneous
Dirichlet boundary condition can be described accurately
only through a large number of points. Corresponding to
this grid, the streamline distribution is demonstrated in the
upper part of Fig. 7. The flow through the upper half of the
pore unit is viewed as 1 here. Thus, from the left plotting, we
see that the streamline corresponding to 0-streamfunction-
value separates the main-flow zone from a backwater zone.
In the main-flow area, 1/10 of the discharge passes between
two consecutive plotted streamlines; it is obvious that most
of the flow takes place near the center of the pore. A more
detailed picture on the flow within the backwater zone is
shown in the right plot in which each two neighboring
streamlines occupies only 0.1% of the discharge, which
means that the eddy taking place in the backwater zone is
very weak.

Finally, we move nodes once more to reduce errors,
yielding a mesh demonstrated in the lower-right corner of

Fig. 4. Elementt is refined by the longest edge bisection method: from the original mesh (left), the first step of bisection (middle) does not
yet yield a compatible triangulation; however, the second step (right) does yield a triangulation.

Fig. 5. The subregionQv, associated with vertexv.
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Fig. 6. The corresponding numerical streamline solution is
depicted in the lower part of Fig. 7. We keep here the same
scale used for the previous streamline plotting, and notice
that the most important difference is the change of the 0-
streamfunction-value line. After moving points, this line
turns out perpendicular to the solid wall, which reflects
more closely the physical situation.

We plot in Fig. 8 the velocity and pressure solution asso-
ciated with the final mesh. We remark that in our work, the

maximum horizontal velocity component is normalized to
1, and all velocity illustrations in this paper are subject to
this rule. The symmetry of iso-solution-value-line distribu-
tions implies to some degree the periodicity of the Stokes
flow in the tube. In addition, the rather small negative hori-
zontal velocity component (umin ¼ ¹ 7.41e ¹ 4) confirms
again that there exists a very weak vertex in the pore.

Complete CPU time statistics for this test case are dis-
played in Table 1. We note that several sweeps of moving

Fig. 6. Case 1: mesh evolution (upper: initial mesh; middle: intermediate meshes; lower: final meshes).
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grid nodes are imposed following mesh refinements in order
to improve the quality of the resulting mesh. This makes the
implementation of mesh refinement use more CPU time.
Overall, 50% of the total CPU time is devoted to mesh
adaptation, the other half used for the solution of the
Stokes problem on successive meshes.

5.2 Test case 2: flow in double pores witha=w̄¼ 0:45,
L=w̄¼ 2:5

Next we double the unit length compared to the previous
test case to make the pore flatter. We set two units as com-
putational domain so that the velocity profile to be imposed
on the entrance and exit sections can be modified with the
numerical solution at the middle neck until they converge to
the same profile. With the aid ofa posteriorierror estimate,
we continue to use here exactly the same mesh adaptive
process as in the previous implementation, involving

uniformly subdividing elements, adaptive refinements, and
moving points.

Fig. 9 illustrates the mesh evolution in this computation
(we demonstrate only a quarter of meshes in this set): the
upper grid is initially generated with 115 points and 160
elements; the intermediate mesh (NV ¼ 1417,NT ¼ 2560)
is located in the middle; the lower grid with 1997 nodes and
3664 triangles is finally obtained via mesh adaptations. As
in the previous case, the most sensitive area is located at
necks where most grid refinement takes place.

Associated with the final mesh, the velocity and pressure
solutions are shown in Fig. 10. Since the channel here is
changing very slowly with respect to the previous case, we
notice that the horizontal velocity component remains
positive all the way. This leads to no backwater area in
the channel seen from the streamline distribution in
Fig. 11. Let us focus on the middle throat area, where
nodes are quite dense following grid refinements. Using

Fig. 7. Case 1: streamline on final meshes (upper: before moving nodes; lower: after moving modes).

Table 1. CPU time statistic for Case 1

Mesh adaptation description Error estimate CPU Adaptation CPU Solution CPU Total CPU

Moving nodes 0.05 0.09 0.20 0.34
SubdivisionNV: 105 → 1425 0.05 0.05 3.47 3.57
Moving nodes 0.73 1.98 3.20 5.91
RefinementNV: 1425→ 1777 0.72 6.31 3.77 10.80
RefinementNV: 1777→ 1999 0.88 7.33 3.94 12.15
Moving nodes 0.98 2.88 4.67 8.53
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the analytical solution studied previously22 as reference, we
find in the comparison shown in Fig. 11 that the streamline
behavior obtained by our adaptive finite element method
shares a practically identical distribution with the available
analytical results. The periodicity of the flow appears clearly
for each of the four physical variables: two velocity

components, pressure, and streamline, depicted in Figs 10
and 11, respectively.

Finally, we take a brief look at the error behavior. The
indices of errors concerning the velocity part(ln(k~=~ek=k~=~uk))
and the density part (ln(kek/kpk)) are respectively illustrated
in Fig. 12, each two consecutive columns representing one
mesh adaptive implementation. With five successive mesh
adaptations, the errors decrease gradually.

5.3 Test case 3: flow in double step-like pores withl/L ¼

0.3, w/L ¼ 0.4, h/L ¼ 0.8, andH/L ¼ 1.2

Finally, we simulate Stokes flow in a step-like pore struc-
ture. The relevant geometric parameters are defined in Fig. 3.
Unlike in the previous two cases, there exist singular points
on the solid boundary, associated with corners on the wall.

The initial triangulation shown in Fig. 13 is quite coarse,
containing only 55 nodes and 68 triangles. An intermediate
mesh is produced following uniform subdivision from one
element into 49 and some auxiliary node-movings. The final
grid towardsNVtarget ¼ 2000 is obtained through a further
adaptive refinement followed by moving nodes once more.
The intermediate and final meshes are shown in Fig. 13.
Corresponding to this mesh set, we plot also a reference
grid with a bigger size (NV ¼ 2251,NT ¼ 4212) than the
final adapted mesh, and a comparison of the error behavior
will be implemented on these two grids.

In this adaptive mesh evolution, the refinement occurs
mainly around singular points (i.e. corners where velocity
is theoretically unbounded) where the biggest error is
located according to the result ofa posteriorierror estimate
computation. The opposite happens at cornes which are
stagnation points: flow rates are low, computed errors are
small, and thus few points are needed.

Associated with the final mesh, the velocity and pressure
solutions of the Stokes problem are demonstrated in Fig. 14.
The periodicity is still clearly shown on these iso-solution-
value-line distributions. Compared to the first test case, the
negative horizontal velocity component appears much
stronger (umin ¼ ¹ 1.39e ¹ 2 versusumin ¼ ¹ 7.41e ¹ 4
in the first case). This means the fluid rotates in the hollow
zone more intensely in this case than in the first case.

Fig. 15 demonstrates the streamline behavior in this step-
like channel. The left plot divides the total flow into 10
parts, the top two lines correspond to the same 0-stream-
function value, which encloses a vortex inside. The right
plot details the vortex behavior within the backwater zone
surrounded by the 0-streamfunction-value line, 2.5% (as
opposed to 0.1% in the first test case) of the discharge pas-
sing between two consecutive plotted streamlines.

We finally remark that the resulting error estimates
on the final adapted mesh aremk~=~ek2 ¼ 0:264 and
(1=m)kek2 ¼ 0:0395 in connection with the velocity and the
pressure parts, respectively, while the reference mesh with a
globally uniform point-distribution yieldsmk~=~ek2 ¼ 0:300
and (1=m)kek2 ¼ 0:0521, though the latter has more nodes
than the former.

Fig. 8. Case 1:u (upper),v (middle), andp (lower) solutions on
final mesh (after moving nodes).
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6 CONCLUSION AND EXTENSION

Flow in the interstices of a porous medium is typically slow,
characterized by a low Reynolds number, and is described
mathematically by the Stokes equations. Solutions to Stokes
flow in domains with complex geometry can be obtained
only numerically and usually at a high computational cost.
However, when the flow domain is restricted to a small
representative area, high accuracy solutions can be obtained
at a reasonable cost.

This work has presented a finite element solver with
adaptive mesh adaptation guided bya posteriori error
analysis. The effectiveness of the solver has been demon-
strated through numerical simulation of flow in various
domains, including cases with flow separation and points

of singularity. The numerical experiments reported in this
work have moderate memory and computational require-
ments and have all been implemented in Sun Sparc-10
workstations.

Mesh adaptation usinga posteriorierror estimates have
been shown to produce accurate results, as accurate as when
using a much larger number of uniform size elements. The
error estimate guides us to deploy nodes and elements where
they are needed and to use a coarse grid where a coarse grid
is sufficient. The final grid obtained through a variety of
mesh adaptation tools distributes the error of numerical
approximation approximately uniformly over the flow
domain. One way to judge the accuracy of the methodology
is that it generally captures the physically important
characteristics of the flow, such as flow separation and

Fig. 9. Case 2: mesh evolution (upper: initial mesh; middle: intermediate mesh; lower: final mesh).
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singularity points. The CPU time used for mesh adaptation
is not insignificant but the results in many cases justify the
cost. With the exception of trivial cases where a uniform
grid is adequate, the required grid density is highly nonuni-
form. In some areas, important physical characteristics can-
not be captured unless the grid is sufficiently fine. Using
a posteriorierror estimates provides a degree of assurance

that the solution is sufficiently accurate numerically, and
implementation of mesh adaptation guides us to allocate
grid nodes over the flow domain as needed for improved
accuracy.

The analysis and numerical examples presented in this
work are for two-dimensional flows. The methodology can
be extended to three dimensions. The theory ofa posteriori

Fig. 10. Case 2:u (upper),v (middle), andp (lower) solutions on final mesh.
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Fig. 11. Case 2: streamline on final mesh (total view of numerical solution (upper); detailed views at the middle neck area of numerical
solution (middle); analytical solution (lower)).
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error estimation is straightforward to extend to three dimen-
sions. The principal difficulties are algorithmic, associated
with the implementation of three-dimensional finite element
mesh generation and adaptation techniques. Practical algo-
rithms are needed for refining/coarsening the grid and for
moving points. In particular, it is necessary to introduce data
structures recording the relationship between, for example,
adjacent tetrahedrons.
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Fig. 12. Case 2: error evolution.

Fig. 13. Case 3: adaptive mesh evolution and another reference mesh (upper-left: initial mesh (NV ¼ 55, NT ¼ 68); upper-right:
intermediate mesh (NV ¼ 1807, NT ¼ 3332); lower-left: final adaptive mesh (NV ¼ 1993, NT ¼ 3688); lower right: reference mesh

(NV ¼ 2251,NT ¼ 4212)).
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Fig. 14. Case 3: solution on final mesh (upper:u; middle: v, lower: p).
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